Future Potential of EVs

Future Potential of EVs

Just for fun, let’s brainstorm cool things that become possible. If you have ideas, drop them in the comments and I’ll add them here.

Grid Stabilization

This actually has enormous opportunity. Our electrical grid doesn’t have a lot of built in storage, which makes it prone to blackouts and brownouts. EVs could act like micro-storage for the grid. When plugged in, they could be used to power your home or the grid in a blackout. You could also sell electricity back to the grid at peak times in the day and charge back up at night when electricity is cheaper. Some customers may be opposed to this, due to potential wear on the battery, but on the other side having your car generate income counteracts the normal ‘car as a depreciating asset’ model we’re used to.

Supplementary Solar

Most EVs don’t have solar panels. The sun’s energy is nowhere near enough to offset normal driving requirements, but getting a bit of free range from the sun would be nice. Toyota is testing a Prius prototype that is estimated to provide ~28 mi / 45 km per day range while parked or ~35 mi / 56 km per day while driving. Tesla estimates the Cybertruck could get 15 mi / 24 km per day from solar covering just the flat truck bed portion. Overall, supplementary solar could be useful for off-grid camping, and could provide enough energy to support all your cooking, heating, lighting and music needs while off-grid.

Car-to-Car Charging

The only company I’m aware of that does this is Rivian, and it makes sense for their overlanding use-case, where if you run out of juice deep in the backcountry a tow is unfeasible or expensive. If this becomes a standardized feature across manufacturers it could allow ‘boosting’ drained EVs enough to get to the nearest charging stations.

Road Charging

This one is crazy sounding, but future roads could have electrical lines run under them to allow wireless induction to charge cars driving on them. This has even been tested. In dense cities, this could allow lightweight vehicles with very small battery packs to get around. On longer routes, it could be used for short stretches to provide range boosts to all vehicles and reduce the need to stop to charge.

There have also been proposals for embedding solar panels in roads, but I remain skeptical.

Cars Re-Imagined

EVs have stoked competition with ICEVs, and making the world rethink what a car is. Competition drives innovation. Many features developed for EVs can be taken by ICEVs to make them better. And we also want innovation to come from ICEVs back to EVs. This is not a zero-sum game and we want both to improve in parallel. Some places both EVs and ICEVs can improve:

  • Autonomous driving cars (we will be doing a separate post on this)
  • Hidden door handles and side mirrors
  • Better air suspension systems
  • Independently steering wheels
  • Improvements in hydraulic roll control. Basically a hydraulic motor in the middle of the sway bar that can either generate roll or suppress it. Note that some high-end ICEVs already have this, like the Porsche Cayenne.
  • Deep water submersion, like how the Rivian R1S can wade to 3 feet depth. It is even claimed the CyberTruck can “float for awhile” but that remains to be seen.

Finally, on to the Conclusions!

Header image credit: Joshua Sortino
Show Comments